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Received 29 January 1993 

Abstract. A probabilistic.automata network SIS model for the spread of an infectious disease 
in a population of moving individuals is studied. The local rule consists of two subrules. The 
first one, applied synchronously, models infection and recavery. It is a probabilistic cellular 
automaton rule. The secand, applied sequentially, describes the motion of the individuals. The 
model contains three parameters, the probabilities p l  to get infected and pr to recover, and 
the avemge number of tentative moves per individual m. Depending upon the values of these 
parameters, in the infinite-time limit, the system is either in the diseasefrk state or in the 
endemic state. ~ It goes from one state to the other through a transcritical bifurcation similar 
to a second-order phase transition characterized by a non-negative order parameta, whose role 
is played, in this model, by the stationary density of infected individuals. The (pi, pr)  phase 
diagram and the critical behaviour of the stationary density of infectives in the neighbourhood of 
the phase Innsition, are studied as afunction ofm. According to whether the individuals perform 
short- or long-range moves, it is found that the parametem characterizing the h’ansition have a 
qualitztvely different behaviour as m varies. When m is very large, the conelations created by 
the application of the subrule modelling infection and recovery are destroyed, and, as expected, 
the behaviour of the system is then correctly predicted by a mean-field-type approximation which 
assumes a homogeneous mixing of the individuals. When m is not large. this assumption is no 
longer correct. 

1. Introduction 

This paper discusses a probabilistic automata network SIS model, i.e. a model in which, 
after recovery, infected individuals (I) become susceptibles (S) again to catch the disease 
(as, e.g., with the common cold). This model exhibits a~transcritical bifurcation between a 
endemic state and a diseasefree state. The emphasis is on the influence of motion of the 
individuals on the critical behaviour of the model in the neighbourhood~of the bifurcation 
point. 

In models formulated in terms of differential equations, the motion of the individuals 
is usually taken into account by incorporating a diffusion term in the evolution equation. 
A typical~example is Murray’s model for the spatial spread of rabies among foxes in 
Europe (KallCn etal 1985, Murray etal 1986). These models, which have unquestionably 
contributed to our understanding of the spread o f  an infectious disease, do not, however, take 
into account correctly the short-range character of the infection process. This is manifest 
when the system exhibits bifurcations. In phase-transition theory it is well known that in 
the vicinity of a bifurcation point-i.e. a second-order transition point-certain physical 
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quantities exhibit a singular behaviour (Boccara 1976). It is only above a certain spatial 
dimensionality-the upper critical dimensionality-that the behaviour of the system may be 
correctly described by a partial differential equation. 

One way to take the short-range character of the infection process into account correctly 
is to discretize space, and to represent the spread of an epidemic as the growth of a random 
cluster on a lattice if, after recovery, infected individuals become permanently immune 
(Grassberger 1983, Cardy and Grassberger 1985). This model exhibits non-trivial critical 
behaviour. It is in the same universality class as percolation cluster growth models. Its 
upper critical dimensionality is equal to 6 (Cardy 1983). 

The relationship of the spatial spread of an epidemic to the percolation process was first 
noticed by Mollison (1977), and after the publication of his paper, and the introduction of 
random graphs-which are graphs with randomly coloured edges-by Gertsbakh (1977). 
several papers have appeared in the mathematical literature on the so-called spatial general 
epidemic model (see, e.g., Kuulasmaa 1982, Kuulasmaa and Zachary 1984, Cox and Durrett 
1988). 

All these models, however, neglect the motion of the individuals which, for the general 
epidemic model, has been found to be an important factor (Boccara and Cheong 1992). 

N Boccara and K Cheong 

2. Description of the model 

In an SIS model, based on disease status, the individuals are divided into two disjoint groups: 
(s) the susceptible group, i.e. those individuals who are not infected but who are capable 

of contracting the disease and become infective; and 
(I) the infective group, i.e. those individuals who are capable of transmitting the disease 

to susceptibles. 
The model is formulated in terms of automata networks (Coles and Martinez 1990). 

Automata networks are discrete dynamical systems in time and space. They may be defined 
as follows. 

Let G = (V ,  E )  be a graph, where V is a set of vertices and E a set of edges. Each edge 
joins two vertices not necessarily distinct. An automata network, defined on V ,  is a triple 
(G, Q, (fjli E V I ) ,  where G is a graph on V ,  Q a finite set of states and f i :  Q l u j l  -+ Q a 
mapping, called the local transition rule associated to vertex i. Uj = ( j  E V l ( j ,  i) E E ]  is 
the neighbourhood of i, i.e. the set of vertices connected to i, and [Uil denotes the number 
of vertices belonging to Ui. The graph G is assumed to be locally finite, i.e. for all i E V ,  
IU,l < 00. 

In our model the set V is the two-dimensional torus Zi, where ZL is the set of 
integers modulo L. The neighbourhood of a given vertex ( x ,  y )  is the set of four vertices 
( ( x  i e,, y i e y )  I e, = 1. ey = 11. A vertex is either empty or occupied by an individual 
belonging to one of the two groups. The spread of the disease is governed by the following 
rules: 

(i) Susceptibles become infective by contact, i.e. a susceptible may become infective with 
a probability pi if, and only if, it is in the neighbourhood of an infective. More precisely, 
during one time step, the probability that a susceptible having z infected neighbours becomes 
infected i s  (1 - (1 - p f ) .  This hypothesis neglects incubation and latent periods, i.e. an 
infected susceptible becomes immediately infective. 

(ii) Infectives recover and become susceptible again with a probability pr. That is, at 
each time step, an infected individual either recovers with probability pr or remains infected 
with probability I - pr. The number of time steps T during which he remains infected is a 
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random variable with a geometric distribution, i.e. the probability P ( T  = k) that T is equal 
to the positive integer k is equal to p,(l - pJk- ' ,  and we have 

where, as usual, E(T) and Var(T) denote, respectively, the mean and the variance of T. 
This assumption states that recovery is equally likely among infectives, it does not take into 
account the length of time the individual has been infective. 

(iii) The time unit is the time step. In practical applications, the choice of the unit of 
time i s  related to the probabilities pi and pr. During one time step,~the two preceding rules 
are applied synchronously.~ and the individuals mnve on the lattice according to a specific 
rule. 

(iv) An individual selected at random may move to a vertex also chosen at random. 
If the chosen vertex is empty the individual will move,  otherwise the individual will not 
move. The set in which the vertex is randomly chosen depends on the range of the move. 
To illustrate the importance of this range, we considered two extreme cases. The chosen 
vertex may either be one of the four neighbours or be any vertex of the graph. These two 
particular types of move will be called, respectively, skorf- and long-range moves. If N is 
the total number of individuals on Zt. mN individuals, where m is a positive real number, 
are sequentially selected at random to perform a move. Since N is large (103-104), m N  
can still be an integer if m is small (lo-'). This sequential process allows some individuals 
to move more than others. In particular, the probability that s given individuals are not 
selected to perform a move is (1 - s /N)",  which tends to e-'"' as N tends to CO. Since an 
individual may only move to an empty site, the parameter m represents the average number 
of tentative  moves per individual during a unit of time. 

This model is rather crude. Its purpose is to help understanding of the importance of 
motion. It assumes that the population is closed. It ignores births, deaths by other causes, 
immigrations or emigrations. 'It is a probabilistic automata network with a mixed transition 
rule. That is, at-each time step, the evolution results from the application of two subrules. 
The first subrule determines which susceptibles become infectives and which infectives 
recover. It is a probabilistic three-state cellular automaton rule. It is applied synchronously. 
The second one specifies the motion of the individuals. It is applied sequentially. Both 
subrules are translation invariant, i.e. they do not depend upon the vertex (x, y). 

3. Mean-field approximation 

The mean-field approximation ignores space dependence and neglects correlations. It is, 
therefore, equivalent to the assumption of homogeneous mixing, which is considered a 
questionable assumption in epidemic modelling (Anderson and May 1991). In the case of 
a physical system exhibiting a phase transition the quantitative predictions of a mean-field 
approximation are not very good. However, for the SIS model described in the preceding 
section, since the second subrule represents a process,that destroys the correlations created 
by the first subrule, in the limit m + co, the mean-field approximation becomes exact. 

If the densities of the different groups of individuals are not space dependent, the state 
of the system at time f is characterized by the densities &FA@) and of susceptibles 
and infectives, and the evolution equation of the density of infectives is 

, .  
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where z is the number of neighbouring vertices of a given vertex. For the two-dimensional 
square lattice considered in our simulations, z = 4. Note that, within the framework of this 
approximation, the incidence rate, i.e. the rate of new infection, represented by the term 
SMFA(t)(l - (1 - p i / ~ p ~ ( ? ) ) ' ) ,  is not bilinear as in most models (Bailey 1975, Waltham 
1974, Anderson and May 1991). Nonlinear incidence rates have recently been shown to 
exhibit very different dynamic behavisurs (Hethcote and van den Driessche 1991). 

N Boccara and K Cheong 

Since the population is closed, the total density 

In the infinite-time limit, the stationary density of infectives IMFA(W) is such that 

IMFA(O~) = (I - P~)~MFA(CO) + (C - IMFA(oo))(~ - (1 - P~~MFA(oo))'). (4) 

I M p A ( m )  = 0 is always a solution of equation (4). This value characterizes the disease-free 
stare. It is a stable stationary state if, and only if, zCpi - ~ p r  < 0. If zCpi - pr  > 0, 
the stable stationary state is given by the unique positive solution of equation (4). In this 
case, a non-zero fraction of the population is infected. The system is in the endemic stare. 
For zCpi - pr = 0 the system, within the framework of the mean-field approximation, 
undergoes a transcritical bifurcation similar to a second-order phase transition characterized 
by a non-negative order parameter, whose role is played, in this model, by the stationary 
density of infected individuals fMF,&,(m). This threshold theorem is a well known result for 
differential equation SIS models (Hethcote 1976). 

It is easy to verify that, in the endemic state, when zCpi - pr tends to zero from above, 
IMFA(OO) goes continuously to zero as zCpi - pr. In the (p i ,  p J  parameter plane, 

zcpi - PI = 0 (5)  

is the equation of the second-order phase transition line. 
In phase-transition theory, it is well known that constant interaction models exhibit a 

mean-field behaviour. In the appendix a constant interaction version of this SIS model is 
presented. 

4. Simulations 

In all our simulations, the total density of individuals C = 0.6, a value slightly greater than 
the site percolation threshold for the square lattice, which is equal to 0.593 (Stauffer 1979), 
in order to be able to observe cooperative effects when m = 0. Except to check possible 
size effects, all our simulations have been performed on a 100 x 100 lattice. All our results 
are averages over IO measuremen& 
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4.1. Short-range moves 
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. .  

Figure 1. (pi. pr) phase.diagram in the case 
of short-range moves for m = 0 ( 0 ) ; m  = 2 
(x). m = 8.(0). The broken curve represents 
the mea-field approximation. Total density 
C = 0.6; lattice size, 100 x 100. ~ . 

Figure 1 represents the (pi, p;) phase diagram for different values of m in the case of 
short-range moves. Figure 2shows a typical variation of the stationary density ofinfectives 
i ( m .  CO) as a function of pi for given values of pr and m. The slope at the critical point 
(i.e. the transcritical bifurcation point) seems to be infinite. If this isindeed the~case, the 
critical exponent p defined by 

(6) 
log I (m, 00) 

Pi-P:+O+ l o g h  - P,') ,L? = lim 

which is equal to 1 within the mean-field approximation, is less than 1. Figure 3 shows a 
log-log plot of I (m,  CO) as a function of pi - pp, where pr is the critical value of pi, for 
pr = 0.5 and m = 0.3. It is found that pp =0.302 and p = 0.6. To check size effects, we 
have performed some measurements on a 200 x 200 lattice. The fluctuations, as expected, 
are reduced by a factor 2 but the mean values of the density of infectives is not modified. 

It has been clearly established that the mean-field approximation, because it neglects 
correlations which play an essential role in the neighbourhood of a second-order phase 
transition, cannot predict correctly the critical behaviour of short-range interaction systems 
(Boccara 1976). For standard probabilistic cellular automata, this is also the case (Bidaux 
eral 1989, Martins etal 1991). 

For a given value of pr, the variations of f i  and pr as functions of m (figure 4) exhibit 
two regimes reminiscent of crossover phenomena found phase-transition theory (Boccara 
1976). In the small-m regime, i.e. for m, 5 10, p,' and particularly ,L? have their m = 0 
values. In the large-m regime, i.e. for m 2 300, p,' and f i  have their mean-field values. To 
check size effects on the crossover values, Boccara etal (1993) have studied the influence of 
m on the critical behaviour of a one-dimensional probabilistic elementary cellular automaton 
(diluted Rule 18). No effect has been found. As shown in figure 5, the exponent f i  does 
not seem to depend upon pr in agreement with what is known from phase-transition theory: 
the value of a critical exponent does not change along a second-order transition 1ine:The 
variation of p; for pr = 1, shown in figure 5, exhibits an interesting re-entrant effect. That 
is, there is a range of values for p i  such that, for small and large values of m, the system 
is in the endemic phase, whereas it is in the disease-free state for intermediate values of m. 
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Figure 2. Typical var i~ ion  of I (m, m) as a function Figure 3. Typical log-log plot of I(m, 00) as a function 
of pi for given values of pr and m in the case of short- of p ,  - pf for given values of pr and m in the c a e  
range moves. Here pr = 0.5, m = 0.3. The critical of short-range moves. Here pr = O S ,  m = 0.3. 
value of pi is 0.3018. Total densiry C = 0.6: lattice The critical value of pi is 0.3018. Typical bars m 
size. 100 x 100. represented. Total density C = 0.6; lattice size, 

100 x 100. 

m m 

Figure 4. Variations of ,9 and p: as functions of m Figure 5. Variations of ,8 and pf as functions of m 
for shoa-range moves: pr = 0.5; C = 0.6, lattice for short-range moves: pt = I: C = 0.6: lanice 
size, 100 x 100. For 0, typical error ban have been size, 100 x 100. For ,9, typical error bars have been 
represented. represented. 

Concerning the value of the critical exponent @ the following two points should be 
stressed. 

(i) The fact that, for small values of m, the exponent B ,  approximately~equal to 0.6, is 
much less than its mean-field value illustrates how wrong the assumption of homogeneous 
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mixing is. This model, which takes into account the'fluctuations in the number of contacts 
in space and time. neglects, however, all other causes of heterogencity. 

(ii) When m = 0, the value of ,9 for this model is equal to the value of ,9 for two- 
dimensional directed percolation (Bease 1977). This result strongly suggests that the critical 
properties of our model are universal, i.e. model independent. 

For given values of pi and pr, we have also studied the asymptotic behaviour of the 
stationary density of infectives, for both small and large values of m. More precisely, we 
have determined the following two exponents 

log(I(c0, CO) - I(m. 00)) 
am = lim 

m+m logm 
The log-log plots in figures 6 and 7 show that (IO = 0.177f0.015 and (I, = -0.945+0.065. 

0.016 

0.016 
8 
d 
I 
8 0.014 

v - 
h 

E- - - 
0.012 

m 

0.0020 

- 00010 
8. o:ooo8 

v E "op,","d: 
I 0.OOOB A 0.0005 

8. 0.0004 
8 

0.0003 

0.0002 

Figure 6. Log-log plot of I(m. m) - l ( 0 ,  m) as a 
function of m for given values of pi and pr in the case 
ofshort-mge moves. The slope is 0.177f0.015. Here 
p; = p, = 0.5. Total density C = 0.6; lattice size. 
100 x 100. 

Figure 7. Log-log plot of I (w, m) - I(m. CO) as a 
function of m for given values of pi and pr In the case 
of short-range moves. The slope is -0.945 & 0.065. 
Here pi = pr = 0.5. Total density C = 0.6; lattice 
size. 100 x 100. Ermr bars are represented. ' 

The fact that or0 is rather small shows the importance of motion in the spread of a 
disease. The stationary number of infectives increases dramatically when the individuals 
start to move. In other words; we may say that the response aI(m, ffi)/am of the stationary 
density of infectives to motion of the individuals tends to CO when m tends to 0. The 
asymptotic behaviour of I(m, CO) for small m is related to the asymptotic behaviour of 
I ( 0 ,  f )  for large t, as shown by the following approximale argument. I(0,ca) is an average 
computed over all the configurations belonging to the attractor of the probabilistic cellular 
automaton rule modelling infection and recovery (first subrule). Between two successive 
applications of this rule, moving the individuals changes the stationary density of infectives 
and, if m is small, it may be assumed that the rate with which the density changes is 
proportional to m. Therefore, we may write 

- O(m). lim - - ar(m, t) 
I - - * ~  at  



3714 

If, for large t ,  we have (see figure 8) 
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lim I (m, t )  = O ( P )  
m-0 

then t-y- '  = O(m). Thus liml+m I (m ,  t )  = O(mY!(y+')). Therefore, this simple argument 
yields 

EO = Y / ( Y  + 1). (11) 

We have found y = 0.26 i 0.06, that is y / ( y  + 1) = 0.206 f 0.06. Considering the large 
error on y (about 25%) (11) is approximately verified. 

0 2 4 
In t 

Figure 8. Here 
pl = pr = 0.5. Total density C = 0.6; lattice size, 1000 x 1000. Initial density of infectives 
I (0 ,O)  = 0.8C. The slope is -0.26 i 0.06. 

Asymptotic behaviour of the density of infectives I ( 0 , f )  for large f. 

Since random short-range moves correspond to diffusion, the value of am, which is close 
to - 1, is not surprising. Indeed, for large m, this diffusive motion destroys correlations in 
a volume which behaves as mJI2, where d is the space dimensionality. Therefore, if the 
spatial correlations created by the first subrule decrease rapidly enough, I (m,  00) should 
tend to I(m. 00) as l/m. 

4.2. Long-range moves 

For long-range moves, the variations of j3 and p,' as functions of in, for a fixed value of pr, 
are very different from those for short-range moves. Figure 9 shows that j3 and p,' reach 
their mean-field values very rapidly. Whereas for short-range moves, j3 and p,' do not vary 
in the small-m regime, here, in contrast, the derivatives of ,3 and pr with respect to m tend 
to 00 as m tends to 0. For small m, the asymptotic behaviour of ,9 and p: may, therefore, 
be characterized by an exponent. Figures 10 and 11 show log-log plots of, respectively, 
p(m)  - p(0)  and pp(0) - p:(m) as functions of m. Both exponents are close to 0.5. 
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OA t 1 

m 

Figure 9. Variations of f l  and p: as functions of m for long-range moves. pr = 0.5, C = 0.6, 
lattice size, 100 x 100. For f l ,  a typical error bar is represented. 
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Figure IO. Log-log plot of p(mj -@CO) as a function Figure 11. Log-log plot of pr(0)  -p; (m)  as a function 
of m for a given value of pr in the ease of long-range of m for a given value of pr in the case of long-range 
moves. The slope is 0.47rt 0.05. Here pi = 0.5. Total moves. The slope is 0.51 i0.05. Here pr = 0.5. Total 
density C = 0.6; lanice size, 100 x 100. Error bars are , density C = 0.6; lattice s@, 100 x 100. Error bars are 
represented. represented. 

5. Conclusion 

We have studied an automata network SIS model for the spread of infectious diseases 
in populations of moving individuals. The local rule of the automaton consists of two 
subrules. The first, which is synchronous, models infection and recovery, the second, 
applied sequentially, describes the different types of moves the individuals may perform 
The model contains three parameters. pi and pr, which are, respectively, the probabilities to 
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be infected by contact and to recover, characterize the probabilistic cellular automaton rule 
modelling infection and recovery. The mixing process, which follows from the application 
of the second subrule, is characterized by a parameter m that represents the average number 
of tentative moves per individual. Depending upon the values of these parameters, in the 
infinite-time limit, the system is either in the disease-free state or in the endemic state. It 
goes from one state to the other through a transcritical bifurcation similar to a second-order 
phase transition characterized by a non-negative order parameter, whose role is played, in 
this model, by the stationary density of infected individuals. 

Our main results emphasize the influence of m, i.e. the importance of motion. In 
particular, we have found that the derivative of the stationary density of infectives with 
respect to m, which characterizes the response of the system to motion of the individuals, 
tends to CO as m tends to zero, and, therefore, the asymptotic behaviour of the stationary 
density of infectives for small m may be characterized by an exponent which has been 
determined. 

In the neighbourhood of the phase transition the system exhibits a critical behaviour 
due, for any finite value of m ,  to the local character of the subrule modelling infection 
and recovery. For m = 0, the critical exponent p has the value found for two-dimensional 
directed percolation, suggesting that the critical behaviour of our SIS model is universal, i.e. 
the same for a large class of two-dimensional models. The (pi ,  p r )  phase diagram and the 
critical behaviour of the stationary density of infectives have been studied as functions of m. 
According to whether the individuals perform short- or long-range moves, we have found 
that, for a fixed value of p r ,  the threshold p: and the exponent 6 have qualitatively different 
behaviour as m varies. When h is small, the derivatives of pi and ,5’ are, to the precision 
of our results, equal to zero for short-range moves, whereas they are infinite for long-range 
moves. When m becomes very large, the correlations created by~the application of the 
subrule modelling infection and recovery are destroyed and, as expected, the behaviour of 
the system is then correctly predicted by the mean-field approximation. 
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Appendix. Constant interaction SIS model 

In a constant interaction model, the neighbourhood U, of a given vertex i consists of all the 
other vertices. That is, U, = V - [i). Hence, if [VI denotes the total number of vertices, 
IUjl = IVI - 1. Since the number of neighbours is very large, the probability to become 
infective by contact must be very small. More precisely, when IVI tends to infinity, this 
probability should behave as l/lVl. Therefore, equation (3) becomes 

where C is the total density and Icj denotes the density of infectives. In the limit I V i  + 00, 

equation (Al) i s  replaced by 

Note that, in this model, the parameter pi does not represent a probability. That is, it may 
take values greater than 1. 

Depending upon the values of the different parameters, the stationary density of 
infectives Zc,(m) for this model exhibits a behaviour similar to that obtained using the 
mean-field approximation. In particular, in the (pi ,  p J  parameter plane, 

(A3) 

M t  + 1) = (1 - p J k t ( t )  + (C - f d t ) ) ( l  - exp(-pik/(t))). (Az) 

cp i  - pr  = 0 
is the equation of the second-order phase-transition line. 
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